### Ultra-high energy cosmic rays: lessons from Pierre Auger Observatory



Henryk Wilczyński Instytut Fizyki Jądrowej PAN, Kraków

Astrofizyka Cząstek w Polsce - 2015

Warszawa, 11-13 maja 2015

### Cosmic ray energy spectrum



10^{20} eV in LHC technology  $\rightarrow$  need accelerator size of Mercury orbit

### Ultra-high energy cosmic rays

Key questions:

Where do they come from?
What are they made of?
How do their accelerators work?
Is there a limit to their energy?
What can they tell us about the fundamental and

•What can they tell us about the fundamental and particle physics?

Expect the Greisen-Zatsepin-Kuzmin (GZK) effect

interactions with CMB photons at E >  $\sim 5 \times 10^{19}$  eV:

$$p + \gamma \rightarrow \Delta^{+} \rightarrow p + \pi^{0}$$
$$n + \pi^{+}$$

 $\rightarrow$  reduction of proton energy

 $\rightarrow$  spectrum suppression above the threshold

### The Pierre Auger Observatory

#### Located in Mendoza province, Argentina



Surface Detector (SD) 1600 detector stations 1.5 km spacing 3000 km<sup>2</sup> 100% duty cycle exposure calculated geometrically

Fluorescence Detector (FD) 27 telescopes calorimetric energy duty cycle ~13% exposure based on MC

4



# Hybrid detection of extensive air showers

## Use simultaneously both FD and SD techniques

Pierre Auger Observatory

### Hybrid reconstruction



### UHECR spectrum ~10 years ago





### CR energy spectrum from Auger



Spectrum suppression:

due to the GZK cutoff, or maximum energy of accelerators ?

Composition measurement is crucial

### Data compared to GZK effect

Example: assume uniform distribution of only proton or iron sources



Spectrum alone is not enough to select the right scenario  $\rightarrow$  need composition measurement

### Interpretation of the spectrum

#### Spectrum fits in different scenarios



Need for excellent composition measurement to determine the nature of the flux suppression

### Mass composition





Smooth change from a light/mixed composition to a heavier one?

### Mass composition – from $X_{max}$ to In A



$$\langle \ln A \rangle = \frac{\langle X_{\max} \rangle - \langle X_{\max} \rangle_p}{f_E}$$
$$\sigma_{\ln A}^2 = \frac{\sigma^2 (X_{\max}) - \sigma_{\rm sh}^2 (\langle \ln A \rangle)}{b \sigma_p^2 + f_E^2}$$

Average In A <In A> =4 pure Fe <In A> ~2 50% Fe 50% p <In A> =0 pure p

Dispersion of masses (due to source or propagation)  $\sigma^2(\ln A)=4$  50% Fe 50% p  $\sigma^2(\ln A)=0$  pure p or Fe

<In A> has a minimum in the ankle region
The mix must include intermediate nuclei

### Mass composition - protons vs Fe

Fitted fraction and quality: p and Fe only



Very poor fit to the data None of the models can reproduce the Xmax with p and Fe only

### Mass composition with intermediate nuclei



### Muon deficit in shower simulations



The existing models of HE interactions cannot consistently describe the data

### Diffuse photon limit



Photon upper limits rule out Top-Down models of CR origin Observation of GZK photons and neutrinos will verify the GZK effect 16

### Point sources?

#### Correlation to AGNs at E>55 EeV within 3.1 deg



Weak correlation: ~33% while isotropic background =21% but are there protons at E>55 EeV?



### Large scale anisotropy



Galactic sources at E>1 EeV strongly disfavoured

### What have we learned with Auger

The data so far indicate the main problems to be solved:

Elucidate the origin of the flux suppression, i.e. GZK vs maximum energy measure composition into the flux suppression region - use Surface Detector for higher statistics

Disentangle composition from interaction properties air shower physics and hadronic multiparticle production reliable muon counting in air showers

Search for a flux contribution of protons up to the highest energies, at a level of 10%

proton astronomy up to the highest energies - composition event-by-event!

 $\rightarrow$  Need to upgrade detectors of the Pierre Auger Observatory

better EM/muon component separation better shower modelling