SPECTROMETER/TELESCOPE FOR IMAGING X-RAYS (STIX) ON-BOARD THE SOLAR ORBITER

M. Steślicki1, T. Mrozek1,2, M. Kowaliński1, P. Podgórski1, D. Ścisłowski1, J. Barylak1, A. Barylak1, J. Sylwester1, and STIX Team

1Space Research Centre Polish Academy of Sciences, Solar Physics Division, Poland
2Astronomical Institute, University of Wrocław, Poland
Solar Hard X-Ray emission

Typical (spatially unresolved) HXR spectrum is a mixture of several sources of various parameters.

Observations reveal at least five (or four) types of HXR sources:

- above-X-point
- above-the-loop-top
- thermal loop top
- foot point
- halo/albedo

Therefore, the important step in understanding HXRs may be taken with imaging spectroscopy – present instruments allow for this.
Solar Orbiter Instruments

- **EUI**: Extreme Ultraviolet Imager
- **METIS**: Multi Element Telescope for Imaging and Spectroscopy
- **PHI**: Polarimetric and Helioseismic Imager
- **SoloHI**: Heliospheric Imager
- **SPICE**: Spectral Imaging of the Coronal Environment
- **STIX**: Spectrometer/Telescope for Imaging X-rays
- **EPD**: Energetic Particle Detector
- **MAG**: Magnetometer
- **RPW**: Radio and Plasma Waves Experiment
- **SWA**: Solar Wind Analyser

Launch date: 2018
Duration: 3 years cruise + 4 years mission (+ 3 year extension)

Fahmy et al. (2013)
The orbit
Mission profile
STIX science goals and observations

STIX will determine the intensity, spectrum, timing, and location of solar hard X-ray sources.

detection X-rays from 4 to 150 keV

Hard X-ray Spectrum and Image from RHESSI

Figure 1. Typical hard X-ray observations of a solar flare (observations are taken by RHESSI). Left: Solar flare spectrum (black histogram) with a thermal (red) and non-thermal (blue) fit to the data. Right: Imaging observations of the same event. The non-thermal emission is seen from the chromospheric footpoints (blue) of the thermal flare loop (red).
The STIX instrument

The STIX instrument consists of three mechanically separate parts:

- **Imager**
- **Detector Electronics Module (DEM)**
- **X-ray windows**

Technical Specifications

- **Energy Range**: 4 – 150 keV
- **Energy Resolution (FWHM)**: 1-15 keV (energy dependent)
- **Effective area**: 6 cm²
- **Finest angular resolution**: 7 arcsec
- **Field of view**: 2°
- **Image placement accuracy**: ~4 arcsec
- **Time resolution (statistics limited)**: ≥ 0.1 s

Source: Benz et al. (2012)
X-ray windows

Placed in the heat shield of the spacecraft

A thermal baffle that rejects all radiation below 4 keV

Solar flux at 0.28 AU: **17 kW/m²**

Benz et al. (2012)

Fahmy et al. (2013)
The imager

- 32 collimators made of pairs of grids
- Aspect system for absolute pointing with accuracy ±4 arcseconds

Structural and thermal model of the imager (2013)
Coded aperture, fourier imagers

Idea of Fourier imagers for astronomy was born in the late 60s of XXth century

- Oda et al. 1965, Nature 205, 554
- Schnopper et al. 1968, Space Sci. Rev. 8, 534
- Bradt et al. 1968, Space Sci. Rev. 8, 471
- Takakura et al. 1971, Sol. Phys. 16, 454
Example: RHESSI

IDEAL RMC PROFILES OF GAUSSIAN SOURCES

1. UNIT FLUX, FWHM=0, \((R, \phi) = (8+P, 0)\) \((P=\text{PITCH}=68^\circ)\)

2. HALF-UNIT FLUX, FWHM=0, \((R, \phi) = (8+P, 0)\)

3. UNIT FLUX, FWHM=0, \((R, \phi) = (8+P, \pi/4)\)

4. UNIT FLUX, FWHM=P, \((R, \phi) = (12+P, 0)\)

5. UNIT FLUX, FWHM=P/2, \((R, \phi) = (8+P, 0)\)

6. UNIT FLUX, FWHM=P, \((R, \phi) = (8+P, 0)\)

7. UNKNOWN SOURCE DISTRIBUTION

- point source, unit flux
- point source, half-unit flux
- point source, position change (angle)
- point source, position change (radial)
- size of the source = pitch/2
- size of the source = pitch

Reality…
Imaging: grids and Moire patterns

- Front grid and rear grid with slightly different relative orientation and/or pitch create so-called Moiré pattern (Mp)
- Phase of Mp is very sensitive to incident direction of X-ray in plane perpendicular to slits.
- Amplitude and phase of Mp measures amplitude and phase of an X-ray visibility
- Spatial frequency of grid pair determines measured spatial frequency of X-rays
- Pixelized detectors → determine phase and amplitude of Mp = encoded visibility information

Phase of Morie pattern is very sensitive to incident direction of X-ray in plane perpendicular to slits

Slight differences in pitch of grids

Slightly tilted pair of grids
Pixel pattern \rightarrow visibilities

Simulated incident X-rays from an arbitrary direction

The amplitude and phase of a sinusoid fitted to the histogram directly measures the visibility

$\begin{align*}
\text{Real (V)} &= C - A \\
\text{Imag (V)} &= D - B \\
\text{Flux} &= A + B + C + D \\
\text{Check: } A + C &= B + D
\end{align*}$

* Independent of background
** Independent of source morphology

Benz et al. (2012)
Converting Visibilities to Images

- The process of converting a set of measured visibilities to an image is identical to that used for many years in radio interferometry.

- The simplest algorithm for doing this is "back projection" whereby a measured visibility is expressed as a probability map on the sky of possible origins of the source.

- For a single visibility, this takes of the form of parallel stripes with a sinusoidal profile, whose period and orientation corresponds to the period and orientation of the x-ray grids.

- By combining the visibilities with different angular resolution and orientation, the ambiguities associated with any single visibility are removed.

Hurford et al. (2012)
STIX detectors (Caliste-SO)

Single Caliste-SO unit
(1 cm2 CdTe detector - left; ASIC inside the body - right);

“First light” of Caliste-SO spectrometers.
Source: Americium

Energy resolution at 60 keV

Pixel layout of an individual detector:
8 large (~10 mm2) pixels
4 small (~1 mm2) pixels

32 Caliste-SO in total
Handling high dynamic range

- The ratio between the smallest microflare that STIX can detect and the largest X-class flare is 10^5.
- An additional factor of ~ 10 in overall intensity must be accommodated because of SO’s varying distance from the Sun.
- The ratio between the flux at 4 and at 150 keV for the typical steep flare spectrum can be as high as 10^7 to 10^9.

Several strategies are implemented like attenuator or disabling selected pixels (reducing the effective area).
Summary

STIX will measure:

▪ intensity
▪ spectrum
▪ timing
▪ location

of X-rays caused by Bremsstrahlung of thermal and non-thermal electrons in the corona.

Main parameters

▪ Energy range 4 - 150 keV
▪ Energy resolution 1 - 15 keV energy dependent
▪ Fourier components 30
▪ Effective area 6 cm²
▪ Angular resolution 7 arcsec
▪ Pointing accuracy 4 arcsec
▪ Field of view 2°
▪ Time resolution 0.1 s statistics limited