Vacuum stability in the Standard Model and its extensions

Marek Lewicki

Institute of Theoretical Physics, Faculty of Physics, University of Warsaw

Astroparticle Physics in Poland, 12 May 2015, Warsaw

based on:

Z. Lalak, P. Olszewski and ML, JHEP 1405, 119 (2014) arXiv:1402.3826

The project "International PhD Studies in Fundamental Problems of Quantum Gravity and Quantum Field Theory" is realized within the MPD programme of Foundation for Polish Science, cofinanced from European Union,

Regional Development Fund

医子子 医子子

ж.

Standard Model

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

 $\begin{aligned} \chi &= -\frac{1}{4} F_{AV} F^{AV} \\ &+ i F \mathcal{D} \mathcal{J} + h.c. \\ &+ \mathcal{J}_i \mathcal{Y}_{ij} \mathcal{J}_j \mathcal{D} + h.c. \\ &+ |P_A \mathcal{P}|^2 - V(\mathcal{O}) \end{aligned}$

Scalar Potential

Classically ۲ $V_{SM}^{tree} = -\frac{m^2}{2}\phi^2 + \frac{\lambda}{4}\phi^4$ Quantum corrections 0 $V_{SM}^{1-loop} = -rac{m^2}{2}\phi^2 + rac{\lambda}{4}\phi^4$ $+\sum_{i}\frac{n_{i}}{64\pi^{2}}M_{i}^{4}\left[\ln\left(\frac{M_{i}^{2}}{\mu^{2}}\right)-C_{i}\right]$ M_P

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\Delta V_{SM}^{1-loop} = \sum_{i} \frac{n_{i}}{64\pi^{2}} M_{i}^{4} \left[\ln \left(\frac{M_{i}^{2}}{\mu^{2}} \right) - C_{i} \right]$$

• For large field values
 $m^{2} << \phi^{2} \rightarrow M_{i} \propto \phi$
• Expansion under control if
 $\mu = \phi$
 $V_{SM}(\phi) \approx \frac{\lambda_{eff}(\phi)}{4} \phi^{4}$

Tunneling

• Vacuum decay proceeds through nucleation of true vacuum bubbles within false vacuum.

S. R. Coleman, Phys. Rev. D 15 (1977) 2929.
 C. G. Callan, Jr. and S. R. Coleman, Phys. Rev. D 16 (1977) 1762.

• Bubble: *O*(4) symmetric solution of euclidean EOM:

$$\ddot{\phi} + rac{3}{s}\dot{\phi} = rac{\partial V(\phi)}{\partial \phi}, \quad s = \sqrt{ au^2 + ec{x}^2}.$$

with

• $\dot{\phi}(s=0) = 0$ at the true vacuum • $\phi(s=\infty) = \phi_{min}$ at the false vacuum

Tunneling

• Decay probability dp of a volume d^3x

$$dp = dt d^{3} \times \frac{S_{E}^{2}}{4\pi^{2}} \left| \frac{det'[-\partial^{2} + V''(\phi)]}{det[-\partial^{2} + V''(\phi_{0})]} \right|^{-1/2} e^{-S_{E}}$$

Action of the bounce solution

$$S_E = 2\pi^2 \int ds s^3 \left(rac{1}{2} \dot{\phi}^2(s) + V(\phi(s))
ight).$$

- Simplifying:
 - prefactor replaced with width of the barrier $\propto \phi^4(s=0)$
 - volume of the universe approximated by $T_U^3 = (10^{10} \text{yr})^3$

Expected lifetime of the false vacuum ($p(\tau) = 1$):

$$\frac{\tau}{T_U} = \frac{1}{\phi_0^4 T_U^4} e^{S_E}$$

▲□→ ▲ヨ→ ▲ヨ→ ヨーのへの

Standard Model

 Anlytical solution for quartic potential (with λ = const < 0):

$$V(\phi) = \frac{\lambda}{4}\phi^4 \implies S_E = \frac{8\pi^2}{3|\lambda|}$$

K. M. Lee and E. J. Weinberg, Nucl. Phys. B 267 (1986) 181.

Effective potential with nonrenormalisable interactions

• Nonrenormalisable couplings modify the potential around the Planck scale:

$$V pprox rac{\lambda_{eff}(\phi)}{4} \phi^4 + rac{\lambda_6}{6!} rac{\phi^6}{M_p^2} + rac{\lambda_8}{8!} rac{\phi^8}{M_p^4},$$

V. Branchina and E. Messina, Phys. Rev. Lett. 111 (2013) 241801.

 Simple quartic potential approximation:

$$\begin{split} \lambda_{eff}^{NEW}(\phi) &= 4\frac{V}{\phi^4} = \\ \lambda_{eff}^{SM}(\phi) + 4\frac{\lambda_6}{6!}\frac{\phi^2}{M_p^2} + 4\frac{\lambda_8}{8!}\frac{\phi^4}{M_p^4}. \end{split}$$

Numerical vs Analytical

Figure: $\text{Log}_{10}(\frac{\tau}{T_u})$ calculated numerically (left panel) and analytically (right panel).

<ロト <回ト < 注ト < 注ト

æ

RG improvement

• Small correction to SM parameters

$$\Deltaeta_\lambda = rac{\lambda_6}{16\pi^2} rac{m^2}{M_p^2}$$

• One-loop beta functions of new couplings

$$\begin{split} &16\pi^2\beta_{\lambda_6} &= &\frac{10}{7}\lambda_8\frac{m^2}{M^2} + 18\lambda_66\lambda - 6\lambda_6\left(\frac{9}{4}g_2^2 + \frac{9}{20}g_1^2 - 3y_t^2\right),\\ &16\pi^2\beta_{\lambda_8} &= &\frac{7}{5}28\lambda_6^2 + 30\lambda_86\lambda - 8\lambda_8\left(\frac{9}{4}g_2^2 + \frac{9}{20}g_1^2 - 3y_t^2\right), \end{split}$$

Figure: Example solution with $\lambda_6(M_p) = -1$ and $\lambda_8(M_p) = -0.1$.

Numerical vs Analytical with RG improvement

Figure: $\text{Log}_{10}(\frac{\tau}{T_u})$ calculated numerically (left panel) and analytically (right panel).

・ロト ・聞ト ・ヨト ・ヨト

э

Figure: Metastability boundary ($\tau = T_u$) obtained using different methods.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

SM phase diagram

ロト・日本・日本・日本・日本・ショーのへで

Magnitude of the suppression scale

Approximate lifetime:

$$\frac{\tau}{T_U} = \frac{1}{\mu^4(\lambda_{\min})T_U^4} e^{\frac{8\pi^2}{3|\lambda_{\min}|}}$$

٠

Positive λ_6 and $\lambda_8 \rightarrow$ stabilizing the potential

Figure: Scale dependence of $\frac{\lambda_{eff}}{4} = \frac{V}{\phi^4}$ with $\lambda_6 = \lambda_8 = 1$ for different values of suppression scale M. The lifetimes corresponding to suppression scales $M = 10^8, 10^{12}, 10^{16}$ are, respectively, $\log_{10}(\frac{\tau}{T_U}) = \infty, 1302, 581$ while for the Standard Model $\log_{10}(\frac{\tau}{T_U}) = 540$.

Magnitude of the suppression scale

Positive λ_8 and negative $\lambda_6 \rightarrow \text{New Minimum}$

Figure: Scale dependence of $\frac{\lambda_{eff}}{4} = \frac{V}{\phi^4}$ with $\lambda_6 = -1$ and $\lambda_8 = 1$ for different values of suppression scale M. The lifetimes corresponding to suppression scales $M = 10^8, 10^{12}, 10^{16}$, are, respectively, $\log_{10}(\frac{\tau}{T_U}) = -45, -90, -110$ while for the Standard Model $\log_{10}(\frac{\tau}{T_U}) = 540$.

- Analytical approximation of vacuum lifetime is fairly accurate
- RG improvement stabilizes significant parts of the parameter space
- SM vacuum can be stabilized by new physics interactions only if they appear at low enough energy scale $\approx 10^{10}-10^{11}~{\rm GeV}$
- SM vacuum lifetime can be dramatically shortened by new physics at any scale