

Neutrino-nucleon/nucleus interactions in 1 GeV energy range

Krzysztof M. Graczyk

Instytut Fizyki Teoretycznej Uniwersytet Wrocławski

11-05-2015, Warszawa

Why we study neutrino interactions with nucleons and nuclei? Study fundamental neutrino properties

- oscillation parameters, CP violation phase, mass hierarchy problem etc.
- \rightarrow Goal: neutrino physics "a precision science"

* S. Ritz, et al Building for Discovery: Strategic Plan for U.S. Particle Physics in the Global Context, HEPAP Subcommittee (2014).

- A need for precise theoretical predictions of neutrino-nucleon/nuclei scattering cross sections
- Experiment Minerνa, project NuStorm dedicated to measure ν cross sections

Investigation of hadronic and nuclear structure within neutrino-nucleon/nuclei interactions

- axial hadronic structure, transition form factors, electroweak nucleon-resonance excitation
- structure of the nucleus, correlations

Neutrino interactions in Wrocław (group of J. Sobczyk)

- investigation of interactions of 1 GeV neutrinos with nucleons and nuclei
- * close collaboration with polish experimental neutrino groups and T2K and Minerva experiment http://wng.ift.uni.wroc.pl

- accelerator source of neutrinos $\rightarrow E_{\nu} \sim 1$ GeV but neutrino energy not monochromatic: only energy spectrum known with some precision
- ► neutrinos weakly interact → heavy targets like water (oxygen), liquid argon etc...

ν -A Interactions

 $\mathsf{T2K}$ experiment, but also MINOS and others

- QuasiElastic (QE) scattering: only final charged lepton is visible
- but primary interaction would be inelastic → important role of FSI (final state interaction)
- ► energy reconstruction based on Monte Carlo. What you put is what you get → dependency on theoretical lepton-nucleus interaction models.
- imprecise knowledge of nuclear effects results in large systematic uncertainty for CP violation phase and mixing parameters Coloma and Huber, PRL 111, 221802 (2013)

Fig. from Golan

Monte Carlo event generator: a bridge which connects experiment with theory

Modelling interactions of "1 GeV" neutrinos with nucleons and nuclei

- ► Q² the relevant four-momentum transfer below 1 GeV²
- mesons (π s, ...) and hadrons ($n, p, \Delta(1232),...$), but also nuclei (coherent π production) as effective degrees of freedom

Impuls Approximation (IA):

- it is assumed that the primary vertex of interaction is given by v-free nucleon vertex (with nucleon transition form factors)
- effectively neutrino interacts only with one single nucleon inside nucleus
- many body current (describing the interaction) is replaced by sum of one body currents
- the nucleus is treated as set of non-interacting nucleons
- works well for momentum transfer $|\mathbf{q}| > 400 \text{ MeV}$

Charged Current (**CC**) processes:

- CCQE:
 - $\nu_l + n \rightarrow l^- + p$
- ► RES (SPP): $\nu_l + N \rightarrow l^- + N' + \pi$
- DIS: $\nu_l + N \rightarrow l^- + N' + \pi + \dots$

Data vs. NuWro simulations: Fig. from Golan, PhD thesis (2014)

Charged Current Quasi Elastic
 ν-Nucleon interaction

- Vector form factors taken from elastic *ep* scattering (from Conserved Vector Current CVC)
- ▶ Partially Conserved Axial Current (PCAC) \rightarrow

$$F_P = \frac{4M^2F_A}{m_\pi^2 - q^2}$$

 ν -interactions

dipole parametrization

$$F_A = \frac{g_A}{(1 - q^2/M_A^2)^2}$$

 $g_A = 1.267$ from β -decay

- *M_A* obtained from analysis of *vN* scattering data
- $\blacktriangleright \langle r_A^2 \rangle$ can be extracted from single pion electro-production data

$$\langle r_A^2 \rangle = \frac{6}{F_A(0)} \left. \frac{dF_A}{dq^2} \right|_{q^2 = 0} = \frac{12}{M_A^2}$$

large M_A mass puzzle

- ▶ Inconsistency between M_A from ν -H, -D and ν - C scattering data (2007)?
- \rightarrow Break down of impulse approximation? Let's go beyond the Fermi gas model

Fig. from Katori, Neutrino Division Seminar, Wrocław 11/30/2009

Relativistic Fermi Gas (RFG) model

- system of non-interacting nucleons;
- the ground state $|\Psi_0\rangle$ contains positive-energy baryon levels filled to some wave number k_F and no antiparticles i.e.

$$\begin{aligned} \mathbf{a}_{\mathbf{p},s} &| \Psi_0 \rangle &= 0, \quad |\mathbf{p}| > k_F, \\ a_{\mathbf{p},s}^{\dagger} &| \Psi_0 \rangle &= 0, \quad |\mathbf{p}| < k_F, \\ b_{\mathbf{p},s} &| \Psi_0 \rangle &= 0, \quad \mathrm{dla} \forall \mathbf{p}, \end{aligned}$$

baryon density $\rho_B = 2k_F^3/3\pi^2$.

charge (proton) distribution insiede Oxygen, $\langle k_F
angle = 199~{
m MeV}$

Quantum Hadrodynamics, Walecka, Serot

- Relativistic many body theory
- ▶ Nucleons, σ , ω , ρ and π mesons, $\Delta(1232)$
- Mean Field approximation,
- Hartree and Hartree-Fock approximmations

$$\begin{split} & \nu_l + A[N,Z] \rightarrow \\ & l^- + (A-1)[N-1,Z] + p \\ & \nu\text{-RFG scattering , 1p-1h excitation} \\ & \frac{d^2\sigma}{d\Omega_{k'}dE_l} = -\frac{G^2\cos^2\theta_c|\mathbf{q}|}{64\rho_B\pi^3E} \operatorname{Im}\left(L_{\mu\nu}\Pi^{\mu\nu}\right). \\ & \rho_B = k_F^3/3\pi^2 - \text{Baryon density} \end{split}$$

$$\begin{split} \mathrm{i}\Pi^{\mu\nu}_{RFG}(q) &= \int d^4x e^{\mathrm{i}q\cdot x} \langle \Psi_0 \mid \mathrm{T}\left(\mathcal{J}^{\mu\dagger}(x)\mathcal{J}^{\nu}(0)\right) \mid \Psi_0 \rangle \\ &= \int \frac{d^4p}{(2\pi)^4} \mathrm{Tr}\left(G(p+q)\Gamma^{\mu}(q)G(p)\Gamma^{\nu}(-q)\right) \\ G(p) &= (\gamma^{\mu}p_{\mu} + M)\left(\frac{1}{p^2 - M^2 + \mathrm{i}\epsilon} + \frac{\mathrm{i}\pi}{E_p}\delta(p_0 - E_p)\theta(k_F - |\mathbf{p}|)\right) \end{split}$$

Notice that $J_{\mu} \sim a^{\dagger}(p)a(p)$.

Long range correlations

IA breaks down below $|{\bf q}|<400$ MeV. We need to enrich description by correlations e.g. collective excitations \to RPA.

$$\Pi^{\mu\nu} = \Pi^{\mu\nu}_{FG} + \Delta \Pi^{\mu\nu}_{RPA},$$

► Ring Random Phase approximation: collective excitations → renormalization of different components of hadronic tensor, see e.g. Graczyk, Sobczyk, EPJ C31, 177 (2003); Graczyk, NPA748, 313 (2005).

Meson Exchange Currents: Two-body current contribution:

Neutrino interacts at once with two correlated nucleons

Two body current:

 $J_{\alpha}^{2p2h} \sim a^{\dagger}(p'_{1})a^{\dagger}(p'_{1})a(p_{1})a(p_{1})$

- annihilates (removes from the Fermi sea, producing a hole) two nucleons with momentum p₁ and p₂
- creates (above the Fermi level) two nucleons with momentum p'₁ and p'₂
- transferred energy and momentum are shared between two nucleons

Correlations in electron scattering

- the problem studied over 40 years
- in electron experiments one knows exactly energy and momentum transfer
- \blacktriangleright QE and $\Delta(1232)$ peak regions can be studied independently
- MEC has relatively large contribution in DIP region

electron scattering: CLAS experiment, Science 320 1476 (2008)

Fig. from Alvarez-Ruso, Hayato, Nieves, New Journal of Physics 16, 075015 (2014)

 Martini et al.: inclusion 2p2h in the analysis of MiniBooNE data resolves partially the problem of large axial mass! M_A ~ 1 GeV

Correlations in neutrino scattering, theoretical models:

- M. Martini et al.
- Valencia group (J. Nieves et al.) a consistent theoretical scheme describing CCQE, 1π production and two body current contributions
- superscaling approach (Donnelly et al.)
- transverse enhancement (A. Bodek et al.) based on electron scattering data
- state of art many body theory computations (J. Carlson, R. Schiavilla, A. Lovato et al) provides a clear theoretical picture, constrained to light nuclei and difficult to translate into direct observable.

Experimental investigations: Miner $\nu \text{a},$ ArgoNeuT,... and others

FIG. 3. (Color online) Electromagnetic longitudinal (top panel) and transverse (lower panel) response functions of ⁴He at q = 600 MeV. Experimental data are from Ref. [10].

Lovato et al. arXiv:1501.01981 Transverse enhancement!

1π production (SPP)

Fig. from Wascko, NuInt05

$\begin{array}{rcl} \nu + p & \rightarrow & \mu^- + \pi^+ + p \\ \nu + n & \rightarrow & \mu^- + \pi^0 + p \\ \nu + n & \rightarrow & \mu^- + \pi^+ + n \end{array}$

- theoretical (phenomenological) models vs. data
 - ANL and BNL *v*-Deuteron scattering data
 - ANL and BNL total and differential cross sections consistent for SPP in νp, Graczyk et al. 2009, Hernandez et al. 2010, Wilkinson et al. 2015
- ► ~ 1 GeV neutrinos dominant contribution from $N \rightarrow \Delta(1232) \rightarrow \pi N'$
- * $\Delta(1232)$ first exited state of the nucleon, 3/2 spin, 3/2 isospin,...
- investigation of axial structure of the $\Delta(1232)$ resonance

Data analysis \rightarrow MC (Nuance, Neut, Genie but not NuWro) \rightarrow Rein-Seghal model

- relativistic quark model for neutrinoproduction of resonances
- effectiv nonresonant contribution
- ▶ only two form factors, 18 resonances (W < 2 GeV)</p>
- improvements: Graczyk, Sobczyk, PRD77 (2008) 053001, PRD77 (2008) 053003, see also V. Naumov et al.
 But this model should be replaced by more consistent description!

Other theoretical approaches:

- Sato-Lee model: dynamical model i.e. Hamiltonian of ∆N coupling obtained with constituent quark model, T-matrix obtained by solving Lippmann-Schwinger equation in coupled channels.
- Isobar models: Giessen group, NuWro, Serot and Zhang, Fogli and Narduli, etc.
- ChiFT: IFIC group, Barbero and Mariano, ...

Problems

- ▶ with reproduction of old *vD* data and recent experimental measurements of Miner*v*a and MiniBooNE
- imprecise knowledge of axial resonance form factors
- with consistent inclusion of heavier resonances and more inelastic contribution

Hernandez et al. latter Lalakulich et al. Wrocław group

$$\langle \Delta(p'=p+q) \mid \mathcal{J}^{CC}_{\mu} \mid N(p) \rangle = \bar{\Psi}^{\lambda}(p') \Gamma^{CC}_{\lambda\mu} u(p), \quad \Gamma^{CC}_{\lambda\mu} = \Gamma^{V}_{\lambda\mu} + \Gamma^{A}_{\lambda\mu}.$$

$$\Gamma^{V,\lambda}_{\mu} = \left[g^{\lambda}_{\mu} \left(\frac{C^{V}_{3}}{M} \gamma_{\nu} + \frac{C^{V}_{4}}{M^{2}} p'_{\nu} + \frac{C^{V}_{5}}{M^{2}} p_{\nu} \right) q^{\nu} - q^{\lambda} \left(\frac{C^{V}_{3}}{M} \gamma_{\mu} + \frac{C^{V}_{4}}{M^{2}} p'_{\mu} + \frac{C^{V}_{5}}{M^{2}} p_{\mu} \right) \right] \gamma_{5},$$

vector form factors are obtained from electroproduction:

$$\Gamma_{\mu}^{A,\lambda} = g_{\mu}^{\lambda} \left(\gamma_{\nu} \frac{C_{3}^{A}}{M} + \frac{C_{4}^{A}}{M^{2}} p'_{\nu} \right) q^{\nu} - q^{\lambda} \left(\frac{C_{3}^{A}}{M} \gamma_{\mu} + \frac{C_{4}^{A}}{M^{2}} p'_{\mu} \right) + g_{\mu}^{\lambda} C_{5}^{A} + \frac{q^{\lambda} q_{\mu}}{M^{2}} C_{6}^{A}$$

axial form factors are obtained from neutrinoproduction but one needs to reduce # independent form factor to C_5^A (it is model dependent procedure)

$$C_5^A(Q^2) = \frac{C_5^A(0)}{(1+Q^2/M_A^2)^2}$$

 $C_5^A(0)\approx 1.15$ related with strong $g_{\pi N\Delta}$ coupling constant (PCAC and Goldberger-Treiman off diagonal Relation – GTR)

- ▶ full model with non-resonant contribution $C_5^A \approx 1.0!$ in disagreement with GTR value!→ lack of unitarity of the model (Hernandez et al. (2010))
- inconsistency between different channels of ANL data! (Graczyk et al. 2014, but also U. Mosel et al. 2011) - nonresonant background not properly described? or/and the problems with FSI effects? J.J. Wu et al.

Fig. from Alvarez-Ruso, Hayato, Nieves, New Journal of Physics 16, 075015 (2014)

- ν -Carbon scattering
 - MiniBooNE puzzle
 - Final state interaction, propagation of $\Delta(1232)$ in nuclear medium ...
 - data are better described by the model without FSI effects? Mosel et al.
 Hernandez et al.
 - tension between Minerva and MiniBooNE measurements Sobczyk, Żmuda PRC91 (2015), 045501

SPP and more inelastic channels for W > 1.4 GeV?

- ▶ include resonances from 2nd and 3d regions → # of unknown axial form factors increases!Problems with nonresonant contribution...
- ▶ Quark-hadron duality \rightarrow Bloom-Gilman duality in eN, eA scattering (PRL25 (1970) 1140, th. De Rujula et al., Ann. Phys. 103, (1976) 315,)

 \rightarrow RESonance region data (i) oscillate around the scaling curve; (ii) are on average equivalent to the scaling curve (iii) "slide" along the deep inelastic curve with increasing Q2.

- ► Fermi motion smears the resonance structure → duality even better!
- ▶ RES structure function \rightarrow DIS structure function inelastic νA cross sections (idea of A. Bodek), used in NuWro
- ▶ BG duality for isoscalar target in νN Graczyk, Juszczak, Sobczyk A781 (2007) 227, Lalakulich, Melnitchouk, Paschos, PRC75 (2007) 015202

Summary

- Neutrino interactions with nucleons/nuclei are intensively studied experimentally and theoretically.
- New neutrino results stimulates electron scattering community.
- All theoretical models discussed in this talk are implemented in NuWro Monte Carlo generator, which is currently used in analysis of experiments: Minerva, T2K.

Fig. from Minerva experiment, Phys.Rev. D91 (2015) 7, 071301.

Neutrino cross section models must be confronted with electron scattering data, eWro electron Monte Carlo generator

Fig. from C. Juszczak